变频系统

变频器(Variable-frequency DriveVFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。

变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。

变频器通常分为4部分:整流单元、高容量电容、和控制器。

常见变频控制方式:

直接转矩控制(DTC)方式:

1985年,德国鲁尔大学的DePenbrock教授首次提出了直接转矩控制变频技术。该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。该技术已成功地应用在电力机车牵引的大功率交流传动上。 直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电动机等效为直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。

矩阵式交交控制方式:

VVVF变频、矢量控制变频、直接转矩控制变频都是交交变频中的一种。其共同缺点是输入功率因数低,谐波电流大,直流电路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。为此,矩阵式交交变频应运而生。由于矩阵式交交变频省去了中间直流环节,从而省去了体积大、价格贵的电解电容。它能实现功率因数为l,输入电流为正弦且能四象限运行,系统的功率密度大。该技术虽尚未成熟,但仍吸引着众多的学者深入研究。其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。具体方法是:

1、控制定子磁链引入定子磁链观测器,实现无速度传感器方式;

2、自动识别(ID)依靠精确的电机数学模型,对电机参数自动识别;

3、算出实际值对应定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;

4、实现Band—Band控制按磁链和转矩的Band—Band控制产生PWM信号,对逆变器开关状态进行控制。

矩阵式交交变频具有快速的转矩响应(<2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(<+3%);同时还具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150%200%转矩。

VVC的控制原理:

VVC的控制原理是将矢量调制的原理应用于固定电压源PWM逆变器。这一控制建立在一个改善了的电机模型上,该电机模型较好的对负载和转差进行了补偿。

因为有功和无功电流成分对于控制系统来说都是很重要的,控制电压矢量的角度可显著的改善0-12HZ范围内的动态性能,而在标准的PWM U/F驱动中0-10HZ范围一般都存在着问题。

利用SFAVM60°AVM原理来计算逆变器的开关模式,可使气隙转矩的脉动很小(与使用同步PWM的变频器相比)。

产品标题

产品简介

变频系统

变频器(Variable-frequency DriveVFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。

变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。

变频器通常分为4部分:整流单元、高容量电容、和控制器。

常见变频控制方式:

直接转矩控制(DTC)方式:

1985年,德国鲁尔大学的DePenbrock教授首次提出了直接转矩控制变频技术。该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。该技术已成功地应用在电力机车牵引的大功率交流传动上。 直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电动机等效为直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。

矩阵式交交控制方式:

VVVF变频、矢量控制变频、直接转矩控制变频都是交交变频中的一种。其共同缺点是输入功率因数低,谐波电流大,直流电路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。为此,矩阵式交交变频应运而生。由于矩阵式交交变频省去了中间直流环节,从而省去了体积大、价格贵的电解电容。它能实现功率因数为l,输入电流为正弦且能四象限运行,系统的功率密度大。该技术虽尚未成熟,但仍吸引着众多的学者深入研究。其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。具体方法是:

1、控制定子磁链引入定子磁链观测器,实现无速度传感器方式;

2、自动识别(ID)依靠精确的电机数学模型,对电机参数自动识别;

3、算出实际值对应定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;

4、实现Band—Band控制按磁链和转矩的Band—Band控制产生PWM信号,对逆变器开关状态进行控制。

矩阵式交交变频具有快速的转矩响应(<2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(<+3%);同时还具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150%200%转矩。

VVC的控制原理:

VVC的控制原理是将矢量调制的原理应用于固定电压源PWM逆变器。这一控制建立在一个改善了的电机模型上,该电机模型较好的对负载和转差进行了补偿。

因为有功和无功电流成分对于控制系统来说都是很重要的,控制电压矢量的角度可显著的改善0-12HZ范围内的动态性能,而在标准的PWM U/F驱动中0-10HZ范围一般都存在着问题。

利用SFAVM60°AVM原理来计算逆变器的开关模式,可使气隙转矩的脉动很小(与使用同步PWM的变频器相比)。